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ABSTRACT
This paper defines a suite of requirements for future hy-
brid cosimulation standards, and specifically provides guid-
ance for development of a hybrid cosimulation version of the
Functional Mockup Interface (FMI). A cosimulation stan-
dard defines interfaces that enable diverse simulation tools
to interoperate. Specifically, one tool defines a component
that forms part of a simulation model in another tool. We
focus on components with inputs and outputs that are func-
tions of time, and specifically on mixtures of discrete events
and continuous time signals. This hybrid mixture is not well
supported by existing cosimulation standards, and specifi-
cally not by FMI 2.0, for reasons that are explained in this
paper. The paper defines a suite of test components, giving
a mathematical model of an ideal behavior, plus a discus-
sion of practical implementation considerations. The discus-
sion includes acceptance criteria by which we can determine
whether a standard supports definition of each component.
In addition, we define a set of test compositions that define
requirements for coordination between components, includ-
ing consistent handling of timed events.

1. INTRODUCTION
FMI (Functional Mock-up Interface) is an evolving stan-
dard for composing model components designed using dis-
tinct modeling and simulation tools [17]. The standard con-
sists of a C API for simulation components and an XML
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schema for describing components. An FMU (Functional
Mock-up Unit) is a component, typically exported from a
modeling and simulation tool, that can be instantiated and
used as part of a simulation in another modeling tool. To
date, the emphasis of the standard has been on components
that model the dynamics of physical systems, such as me-
chanical and electrical components. This emphasis reflects
the origins of FMI as a way to achieve interoperability of
simulators for models of automotive suppliers and OEMs [5].

FMI provides two distinct mechanisms for interaction be-
tween an FMU and a host simulator: i) model exchange,
where the host simulator is responsible for all numerical in-
tegration methods, and ii) cosimulation, where the FMU
implements its own mechanisms for advancing the values of
state variables. In FMI for cosimulation, which is the fo-
cus of this paper, the host simulator provides input values
to the FMU, requests that the FMU advance its state vari-
ables and output values in time, and then queries for the
updated output values. In the FMI 2.0 standard [17], both
of these mechanisms, but most particularly cosimulation, are
optimized for simulating continuous dynamics.

However, the current standard for cosimulation is not de-
signed for reactive systems [9], only for loose coupling
between continuous integration algorithms, where time can
advance somewhat independently within the FMU and the
host simulator. For example, the current version of the stan-
dard provides no mechanism for a cosimulation FMU to out-
put an instantaneous reaction to a changed input value. As a
consequence, the community-driven standardization process
is considering a third mechanism called hybrid cosimu-
lation that strives for the loose coupling of cosimulation,
but with support for discrete and discontinuous signals and
instantaneous events. The intent of this mechanism is to
support hybrid systems [1, 7, 15, 19, 23], where continuous
dynamics are combined with discrete mode changes and dis-
crete events. Designing a rigorous, deterministic, and sound
hybrid cosimulation API is, however, a non-trivial task. In
particular, it is vital to clearly and formally define what the
requirements for such an API should be.

In this paper, we provide a series of formally defined test
components that must be supported by any comprehensive
mechanism that supports hybrid systems. These compo-
nents are chosen to comprehensively cover the space of func-
tionality needed to effectively model mixed continuous and
discrete systems, and to be as simple as possible. More
specifically, we make the following contributions:

• We provide principles and introduce formal notations for
giving a precise mathematical formalization of the test



components (Section 2).

• We define and formalize a nearly minimal set of test
components that are critical for covering a hybrid co-
simulation standard (Section 3).

• We provide a set of test cases that combines some of the
test components. These test cases demonstrate necessary
constraints for a co-simulation master algorithm that is
coordinating the execution of components (Section 4).

All of the mechanisms presented in this paper are realized in
Ptolemy II. What we are working on is a C version for FMI,
possibly with different choices about representation of time.
Ptolemy is a cosimulation engine, of a sort, since it supports
mixing distinct directors. There are many ways to meet the
requirements given here, and an analysis of the alternatives
would take this paper in a very different direction.

2. PRINCIPLES

2.1 Definitions
We adopt the following definitions: A host simulator is
a tool that imports a modeling component (an FMU) that
is either written by hand or exported from another tool (or
possibly even the same tool). The master algorithm is
the execution procedure and policy by which the host sim-
ulator invokes the interface procedures of a component (an
FMU). A communication point is the simulation time
at which the master algorithm invokes an interface proce-
dure of an FMU. A deterministic FMU is one where the
output values and states are uniquely defined given initial
conditions, input values, and communication points. A de-
terministic composition of deterministic FMUs is one
where for a valid sequence of communication points, given
initial conditions and inputs from outside the composition,
the values of outputs of the deterministic FMUs are uniquely
defined. Note that practical implementations may approx-
imate those values using imprecise numerical methods, but
the composition is still deterministic if the ideal correct val-
ues are uniquely defined. The definition of determinism is a
bit subtle. See [12] for a rigorous definition.

2.2 Assumptions
We assume the following principles:

• We prefer a weaker contract over a stronger contract.
That is, we prefer fewer constraints on the design of
FMUs and master algorithms. This will maximize inter-
operability of FMUs and master algorithms.

• We assume superdense time and piecewise continuous sig-
nals (see below and [13]). This is necessary for rigorous
modeling of discontinuities and discrete signals and is al-
ready included in FMI 2.0 for model exchange. .

• The specification should enable, but not require, efficient
execution.

2.3 Notation
We use a particular mathematical notation to define the test
cases in this paper. This notation is not intended to be used
explicitly in the FMI specification for hybrid cosimulation.
It is a mathematical idealization of what would be realized
in an FMU and the host simulator.

The set T = R+×N represents time, where R+ is the set of
non-negative real numbers, and N = {0, 1, 2, · · · } is the set of
natural numbers. A superdense time τ ∈ T is two-tuple,

τ = (t, n), where the real number t represents a time in
the usual Newtonian sense, and n is the microstep, which
indexes sequences of values at Newtonian time t. Every
communication point is a member of the set T .
T is a totally ordered set, where for any τ1, τ2 ∈ T where

τ1 = (t1, n1) and τ2 = (t2, n2), then τ1 > τ2 if either t1 > t2,
or t1 = t2 and n1 > n2. Otherwise, τ1 ≤ τ2.

A signal x is a function of the form x : T → R ∪ {ε},
where ε represents the absence of a value. In the ideal, the
signal is total, defined at all T , but in a simulation, signal
values will be computed only at a finite subset of values of
T . Note that the FMI specification will need to deal with
data types other than reals as well, but we assume here that
those data types simply match what is provided by FMI
2.0. There is no need for a hybrid cosimulation standard
to deviate from the existing standard in this regard. Also
note that nothing in this paper requires that FMI include
any explicit representation of ε. It is a semantical concept.

A continuous-time (CT) signal is one that has a non-
absent value for all τ ∈ T . A discrete-event (DE) signal
is one that has a non-absent value at only some τ ∈ T .
Specifically, following [13], a DE signal x has a non-absent
value x(τ) only for τ ∈ D ⊂ T , where D is a discrete set.1

A signal is discontinuous at any time t ∈ R if there exist
n,m ∈ N such that x(t, n) 6= x(t,m).

The initial-value signal xi for a signal x is a function
of the form xi : R+ → R ∪ {ε} given by xi(t) = x(t, 0) for
all t ∈ R+. At any t ∈ R+, the final microstep mt of
a signal x is a number mt ∈ N such that for all m > mt,
x(t,m) = x(t,mt). The final value at time t is x(t,mt). If
for any t ∈ R+, x has no final microstep, then x is said to
be a chattering Zeno signal. It has a Zeno condition at
time t, where it has an infinite sequence of changing values.
Put another way, for a chattering Zeno signal, there exists
a time where the signal does not settle to a final value.

The final-value signal xf for a non-chattering Zeno sig-
nal x is a function of the form xf : R+ → R ∪ {ε} given
by xf (t) = x(t,mt) for all t ∈ R+, where mt is the final
microstep at time t.

A continuous signal is a CT signal where for all t ∈ R+,
mt = 0 and xi is continuous at t (in the usual sense for
functions of reals). A piecewise-continuous CT signal
is one where

1. mt = 0 for all t ∈ R+, except t ∈ D, where D ⊂ R+ is a
discrete set.

2. xi is left-continuous for all t (in the usual sense for func-
tions of reals).

3. xf is right-continuous for all t.

We can extend the notion of a piecewise-continuous signal
to include DE signals and signals that are neither CT nor
DE (they are absent over some intervals and present over
others). A piecewise-continuous signal is one where

1. mt = 0 for all t ∈ R+, except t ∈ D, where D ⊂ R+ is a
discrete set.

2. If xi(t) 6= ε, then xi is left-continuous at t (in the usual
sense for functions of reals).

3. If xi(t) = ε, then there exists a δ > 0 such that for all
0 ≤ ε < δ, xi(t− ε) = ε.

4. If xf (t) 6= ε, then xf is right-continuous at t (in the usual
sense for functions of reals).

1A discrete set is an ordered set that is order isomorphic
with a subset of the natural numbers [13].



5. If xf (t) = ε, then there exists a δ > 0 such that for all
0 ≤ ε < δ, xf (t+ ε) = ε.

This simply extends the usual notion of left and right con-
tinuity to absent values.

A well formed simulation models a system where all
signals are piecewise continuous. Every piecewise-continuous
signal has a well-defined (possibly empty) sequence of times
d0, d1, d2, · · · , ordered in time, at which it is discontinuous.
An interval between these times, t ∈ (di, di+1), is called a
continuous interval of the signal.

Because of the desirable properties of piecewise-continuous
signals, the components in this paper all have the property
that if all their inputs are piecewise continuous, then all their
outputs are piecewise continuous. If they have no inputs,
then the outputs are by construction piecewise continuous.

Note that for a DE signal x to be piecewise continuous,
we need xi(t) = xf (t) = ε for all t ∈ R+. This is an
important property that enables numerical integrators to
interoperate cleanly with discrete events. Numerical inte-
grators will only deal with initial and final-value functions.
For a DE signal, these signals are absent everywhere, and
therefore such signals have no effect on numerical integra-
tion. Hence, such signals can be used to represent cyber
events in cyber-physical systems. For such signals to affect
the physical dynamics, they can be first converted to CT
signals, for example using the Zero-Order Hold component
described below.

2.4 Time
The specifications in this paper use real numbers to repre-
sent time. Computer programs typically approximate real
numbers using floating-point numbers, which can create pro-
blems. Specifically, real numbers can theoretically be com-
pared for equality, but it rarely makes sense to do so for
floating point numbers. Hence, approximation and a speci-
fied error tolerance will be required in practice.

Several of the components described below specify output
events that occur at specific points in time. When compos-
ing components, it will be beneficial if the view of time across
components is consistent. For example, if two components
produce periodic events with the same period, then it should
be assured that those events will appear simultaneously at
any other component that observes them. Periods that are
simple multiples of one another should also yield simultane-
ous events. Quantization errors should not be permitted to
weaken this property. In short, a useful hybrid cosimula-
tion standard should provide a model of time with a sound
notion of simultaneity, something that can be provided with
the following properties:

1. The precision with which time is represented should be
finite and should be the same for all observers in a model.
Infinite precision (as provided by real numbers) is not
practically realizable in computers, and if precisions differ
to different observers, then the different observers will not
agree on which events are simultaneous.

2. The precision with which time is represented should be
independent of the absolute magnitude of the time. In
other words, the time origin (the choice for the meaning
of time zero) should not affect the precision.

3. Addition of time should be associative. That is, for any
three time intervals t1, t2, and t3,

(t1 + t2) + t3 = t1 + (t2 + t3).

The last two of these three properties are not satisfied by
floating-point numbers, so floating-point numbers should not
be used as the primary representation for time. The first
property implies that the precision of the representation of
time should be a global property of a composition of com-
ponents, not a property of individual components. For a
practical implementation of a model of time that satisfies
all three properties, see [21].

3. TEST COMPONENTS
In this section, we define a suite of test components2 to be a
(nearly) minimal set that represents hybrid (mixed discrete
and continuous) behaviors, plus a small set of components
required to create useful test cases for composition of com-
ponents, described in Section 4 below. The test components
vary wildly in sophistication, with some being quite trivial
and some quite subtle. In each case, we give a Platonic ideal,
a mathematical description of idealized behavior, which will
be approximated by any real implementation (an FMU).

3.1 Constant Signal Generator
Output signal y. Real parameter c.

For all τ ∈ T, y(τ) = c (1)

Discussion. As with many test cases here, this component
provides an output value at all values τ of superdense time.
Since there are an uncountably infinite number of such val-
ues, no computer execution of this component can actually
provide output values at all such times. An FMU and host
simulator for this test case is deemed correct if at every point
τ in superdense time where the host simulator chooses to ob-
serve the output of this FMU (a communication point), then
the value of that output will be c. This test case imposes no
constraints on when such observations are made.

3.2 Gain
Input signal x. Output signal y. Real parameter a.

For all τ ∈ T, y(τ) =

{
ax(τ) if x(τ) 6= ε
ε otherwise

(2)

Discussion. How this component handles absent inputs is
an essential part of the definition. As defined, given a DE
input, the output will be DE.

With the definition in (2), it may be reasonable for an
FMU to require that at every communication point τ for
this FMU, x(τ) 6= ε. That is, the master algorithm should
not invoke interface procedures of this FMU except at times
when the input is present. This would make handling ab-
sent inputs extremely efficient. The FMU would need to do
nothing at all to handle them. The output will be absent
if the input is absent because the FMU will not be invoked
to make the output non-absent. To support this, the hybrid
cosimulation standard would need to provide a way for an
FMU to declare that it requires all input to be present when
invoked. Or conversely, an FMU may indicate, as part of
its interface definition, that it can react even if some (or
all) inputs are absent. We do not include in this paper any
such requirements, however, because we prefer weaker con-
tracts over stronger ones, and we are focused on a minimal

2Note that this set is only instead to represent the capabili-
ties that are needed for hybrid cosimulation, not to be part
of a comprehensive tool test suite.



set of requirements, and not on making cosimulation more
efficient.

Note that the current 2.0 FMI standard for cosimulation
cannot realize this component, even for CT inputs only. We
believe that there is no implementation of this component
consistent with this constraint that supports the calling se-
quences defined in page 104 of the standard document [17].
Specifically, the standard states, “there is the additional re-
striction ... that it is not allowed to call fmi2GetXXX func-
tions after fmi2SetXXX functions without an fmi2DoStep
call in between.” In addition, when fmi2DoStep is called,
the standard requires that the step size be greater than zero
(p.100: “... communicationStepSize ... must be > 0.0”).
Hence, time must advance between setting the inputs and
reading the resulting outputs.

3.3 Adder
Input signals x1 and x2. Output signal y.

For all τ ∈ T ,

y(τ) =


x1(τ) + x2(τ) if x1(τ) 6= ε and x2(τ) 6= ε
x1(τ) if x1(τ) 6= ε and x2(τ) = ε
x2(τ) if x1(τ) = ε and x2(τ) 6= ε
ε otherwise

(3)
Discussion. This component illustrates that an FMU may
be presented at a communication point with some inputs
that are absent and some that are not, and that its behav-
ior may depend on which inputs are present. Of course,
a simpler Adder component would require all inputs to be
present simultaneously, or would use previous input values if
an input is not present. We can certainly design such Adder
components, and indeed a library for simulation might pre-
fer those semantics. But our goal here is to test capabilities
that may be required in hybrid cosimulation, and reacting
differently to different patterns of presence of inputs most
certainly will be required.

This component imposes no constraints on the communi-
cation points, but points of discontinuity of the inputs must
be presented as communication points in order for the out-
put to reflect the ensuing discontinuity.

3.4 Periodic Piecewise Constant Signal Gen-
erator

CT output signal y. Real parameters a, b, p.
Informally, this component outputs the constant a from

time zero to p, b from time p to 2p, a from 2p to 3p, etc.,
alternating between a and b, as illustrated in Figure 1.

We require that the output be piecewise continuous. Specif-

y(t, n)

t

b

a
0 p 2p 3p

Figure 1: Example output from the Periodic Piece-
wise Constant component. The unfilled dots show
values that occur only at microsteps n ≥ 1, whereas
the filled dots and lines show values at n = 0.

y(t, n)

t

a

0 p 2p 3p

Figure 2: Example output from the Periodic Dis-
crete Signal Generator. The unfilled dots are the
only non-absent values, and they occur only at mi-
crostep n = 1.

ically, for all τ = (t, n) ∈ T ,

y(t, n) =


a if kp < t < (k + 1)p and k ∈ N is even;
b if kp < t < (k + 1)p and k ∈ N is odd;
b if t is an odd multiple of p and n ≥ 1;
b if t is an even multiple of p, t > 0, n = 0;
a otherwise.

Discussion. A correct implementation of this component
and host simulator will produce at least the output values
shown in Figure 1 as filled and unfilled dots. Hence, in a
correct implementation, two communication points can be
used at each multiple of p, one at microstep zero and one at
microstep one. A host simulator may choose to invoke the
FMU implementation at additional communication points,
but this is not required. Typically a host simulator will use
a step-size adjustment algorithm to choose communication
points.

3.5 Periodic Discrete Signal Generator
DE output signal y. Real parameters a, p.

This component outputs the constant a at integer multi-
ples of p (see Figure 2), and otherwise its output is absent.
To be piecewise continuous, the output signal should be ab-
sent for all (t, n) ∈ T where n = 0 or n > 1. Specifically, for
all τ = (t, n) ∈ T ,

y(t, n) =

{
a if t = kp and n = 1, where k ∈ N;
ε otherwise.

Discussion. This component provides a canonical source
for a DE signal. It can be used to build regression tests to
verify, for example, that the Gain component above behaves
correctly with DE inputs. It can also be used to provide
discrete inputs to any of the test cases below that require
discrete inputs.

This component requires that there be a communication
point at all t = (kp, 1), k ∈ N. Communication points at
other times are not required, but if the host simulator pro-
vides them, then this component will produce no output (its
output will be absent).

3.6 Modal Model with Discrete Control
DE input signal x. CT output signal y. Real parameters
a, b.

This component initially outputs the constant a. When
the first input event arrives, it switches to producing output
b. When the second input event arrives, it switches back to
a. Etc. Formally,

y(t, n) =

{
a if s(t, n) = 0
b otherwise.

(4)



Figure 3: Modal Model with Discrete Control.

where s is a CT signal such that s(t, n) is the state of the
component at time (t, n), defined as follows. Let d0, d1, d2, · · ·
denote the superdense times τ , in temporal order, at which
x(τ) 6= ε. We are assured that such a sequence, which may
be empty, finite, or infinite, exists, because x is a DE signal.
At any superdense time (t, n) ∈ T , there may exist a max-
imum i ∈ N such that (t, n) > di. If no such i exists, then
either there are no events at all in x or (t, n) ≤ d0. Hence,
at time (t, n), the state s is given by

s(t, n) =

 0 if no such i exists
1 if s(di) = 0
0 if s(di) = 1

(5)

In this definition, at time (t, n), di, if it exists, is the time of
the most recent but strictly earlier input event. Hence, at
time (t, n), s(di) is the previous state of the component. The
current state is always the opposite of the previous state.

In words, the state s is initially 0. Each time an input
event arrives, the state toggles from 0 to 1 or from 1 to
0. The toggle occurs strictly after the input event arrives.
So when an input event arrives at time (t, n), the output
depends on the current state s(t, n) as given by (4), and
then, strictly later, the state is updated as in (5).

An illustration of such a component is given in Figure 3
using a hierarchical modal model in the style of [13]. The
logic of the component is given as a finite state machine
(FSM) (middle level) with two states, each with a mode
refinement that outputs a constant.

Discussion. The state of this component is changed after
each non-absent input. Since the input is required to be a
DE signal, the state changes occur only at a discrete subset
of T . Hence, the state updates are enumerable in temporal
order, and hence computable.

The state of this component is changed after producing
an output value. This ensures that the output is piecewise
continuous, assuming the input is piecewise continuous.

Notice that if we combine this component with a Periodic
Discrete Signal Generator to drive its input, then we can
implement the Periodic Piecewise Constant Signal Genera-
tor. Nevertheless, we keep the Periodic Piecewise Constant
Signal Generator in the suite of test cases to make it easier
for readers to understand the progression of capabilities.

The only constraint that this component imposes on com-

munication points is that there be a communication point
at each superdense time di = (t, n) where the input is not
absent and one superdense time later (t, n + 1). At (t, n),
the output will be determined by the current state, whereas
at time (t, n+ 1), the output will be determined by the next
state. If a 6= b, then this creates a discontinuity, but the
output remains piecewise continuous.

Once we can support this component and the others in-
cluded here, we can implement a broad class of hybrid sys-
tems [15], including timed automata [2] and many oth-
ers.

3.7 Integrator
CT input signal x. CT output signal y.

For all (t, n) ∈ T, y(t, n) =

∫ t

0

x(α, 0)dα. (6)

The output is the integral of the input. We propose three
variants, which are meant to capture key properties of the
most commonly used numerical integration algorithms.

All three variants require a communication point (t,mt)
at every t where x is discontinuous, where mt is the final
microstep at t (note that this requires that the input not
have a chattering Zeno condition for time to advance). The
variants are:

1. Variant 1 imposes no additional constraints on the com-
munication points.

2. Variant 2 requires communication points at (t,mt) for
t ∈ D, where D ⊂ R+ is an arbitrary discrete set, chosen
by the component.

3. Variant 3 requires a communication point at (t, 0) for any
t where there is a communication point.

In all cases, any additional communication points are op-
tional, up the host simulator.

The first two variants do not require that the input x(t, n)
be set at a communication point (t, n) before the output
y(t, n) is retrieved (it must be eventually provided, but it
can be provided after the output is retrieved). By definition
(6), the output y(t, n) does not depend on the input x(t, k)
for any k ∈ N at any time t. Hence, there is no direct
dependence between the input x and the output y (i.e., no
instantaneous dependence, unlike most of the components
above). A component without such a direct dependence is
called a non-strict component, meaning that the input need
not be known at a particular time for the output at that time
to be produced. The third variant is strict, reflecting that
some integration algorithms are strict, despite the definition
(6) (namely, those using implicit integration methods).

Discussion. Note that by definition (6), the output of
this component does not depend on input values at non-
zero microsteps, but a realization will need to see the final
values at discontinuities of the input to maintain accuracy.
For this reason, all variants require that inputs be provided
at final microsteps. The final value of the input x at time
t provides the boundary value for an initial value problem
to be solved by the numerical integration algorithm. The
algorithm needs this value, even if the mathematical ideal
(6) does not. The only variant that requires the initial value
x(t, 0) to be also provided is variant 3, which reflects the
requirements of an implicit integration algorithm. Such an
algorithm requires input values at the end of an integration
interval. At the start of the interval, the final value (confus-
ingly) provides the initial value for an initial-value problem.



At the end of the interval, the initial value (confusingly)
provides the final value of the signal in that interval.

Suppose that the input is discontinuous at times t1 and
t2, where t1 < t2, and is continuous in between. In each
such an interval, an FMU realizing any variant of this com-
ponent needs to solve an initial-value problem, where the
initial value of the integrator state y is equal to the final
value of the signal y at time t1, and the initial value of x (the
derivative of y) is the final value of x at time t1. The inte-
gration algorithm calculates the integral up to time t2 using
standard numerical integration techniques, and the value of
y that it determines at t2 will define the initial value of the
signal y at time t2.

During an interval (t1, t2) between discontinuities, the FMU
may or may not be provided with additional input values x
by the host simulator. I.e., there may or may not be com-
munication points in between. In any case, it cannot be
provided with all such input values, because in general there
are an uncountably infinite number of them. Numerical an-
alysts have developed various techniques for approximating
such integrals given partial information about the input x.
For example, some more sophisticated solvers assume that
the input signal x is not only continuous, but also smooth,
meaning that all its derivatives exist at all points in the in-
terval. In this case, given only the final value of x at time t1
and all its derivatives, then the value of x at any point in the
interval is fully defined and can, in principle, be calculated.
In other words, given the value of the input x at time t1 and
its derivatives, extrapolation to any point in the interval
(t1, t2) is possible.

Even with the smooth assumption, providing all the deriva-
tives at time t1 is not practical. Only a finite number will
be provided by a master algorithm (providing none or one
derivative are the most common). To be interoperable with
a wide range of simulation hosts, the FMU will have to adapt
its integration algorithm to the information provided. For
example, if no derivatives are provided, the FMU might ex-
trapolate using zero-order hold, which assumes that the
input is constant over the interval with the value given by
the final value of x at time t1. Or it might use the recent
history of the input to approximate the derivatives.

No matter what integration algorithm is chosen, and what
information is provided by the host simulator, at least for
some inputs, there will be errors compared to the ideal value
given by (6). The three variants above are intended to reflect
key properties of the most commonly used algorithms.

3.8 Integrator with Reset
CT input signal x. DE input signal r. CT output signal y

The output is the integral of the input, but an additional
discrete input can reset the state of the integrator.

Let D ⊂ T denote the set of time stamps (t, n) ∈ D
where r(t, n) 6= ε. I.e., for all (t, n) ∈ T where (t, n) /∈ D,
r(t, n) = ε. Since this set is order isomorphic with a subset
of the natural numbers, we can list its elements in order, d0,
d1, d2, · · · , where dn < dn+1. For all (t, n) ∈ T , the output
is defined to be

y(t, n) =

{ ∫ t

0
x(α, 0)dα if (t, n) < d0 or D = ∅

r(d) +
∫ t

u
x(α, 0)dα otherwise

where d = (u,m) is the largest element in D s.t. (u,m) ≤
(t, n). We assume the same three variants as the Integra-
tor component, with the additional constraint that for all

variants, there must be a communication point at every
(t, n) ∈ D. In addition, to ensure a piecewise-continuous
output, for every (t, n) ∈ D, we require a communication
point at (t, 0).

Discussion. Absent any reset events r, this is identical
to the Integrator above. At the time of reset events, the
state of the integrator (its output y) gets reset to the value
of the reset event. Like the Integrator, the output y has
no immediate dependence on the input x, and it does not
depend on the value of the input at non-zero microsteps (in
the ideal). But the output y does immediately depend on
the input r.

Assuming r is piecewise continuous, it is absent at all
(t, 0). Reset events can only occur at microsteps greater
than zero. This ensures that the output y is piecewise con-
tinuous. Suppose a reset event occurs at superdense time
(t1, 1). The output y(t1, 0) is unaffected by it, and hence
is part of the preceding continuous segment. At the next
microstep, y(t1, 1) takes on the value given by r(t1, 1). If
there are no further reset events at time t1, then this will
be the final value of the output, which provides the initial
integrator state for the next integration interval.

3.9 Zero-Crossing Detector
The output is a discrete event when the input hits or crosses
zero. CT input signal x. DE output signal y.

For all (t, n) ∈ T , the output is

y(t, n) =



0 if x(t, 0) = 0, n = 1, and there exists a
δ > 0 s.t. for all 0 < ε < δ, x(t− ε, 0) 6= 0

0 if n > 0 and x(t, n− 1) and x(t, n)
have opposite signs,

0 if n > 0 and x(t, n− 1) 6= 0 and x(t, n) = 0,
ε otherwise

(7)
To remove any ambiguity, “opposite signs” means that one
value is negative, and the other value is positive.

Discussion. This is the most subtle of the components
considered in this paper, but it represents widely used func-
tionality in numerical simulation. Every widely used sim-
ulator provides mechanisms for monitoring signals for zero
crossings, which may represent, for example, collisions of
physical objects or other discrete physical phenomena (see
[11] for a few examples). Note that “crossings” is a bit of
a misnomer here, because our zero-crossing detector will
output an event if the input merely “hits” but does not
“cross” zero. This simplifies the test case considerably, be-
cause to detect a legitimate “crossing” would require non-
causal behavior. The component would need to see the fu-
ture of the input in order to output an event. Non-causal
I/O relationships are problematic. Semantics of discrete-
event, continuous-time, and hybrid systems models all rely
on causal I/O relationships [24, 10, 13, 14, 16].

Existing simulators implement variations of this function-
ality. This particular definition is carefully constructed to
ensure that if the input is piecewise continuous, then the
output is a piecewise-continuous DE signal. The first case
above produces an output at n = 1 to ensure that the out-
put at n = 0 is absent, which ensures piecewise continuity
since the output has been absent prior to this time. In addi-
tion, if an input hits zero and then stays there, this compo-
nent produces an output event only when it first hits zero.
Simulink’s “Hit Crossing” block, in contrast, would continue
to produce an event indicator as long as the input signal re-



mains at zero. Our test case is simpler because the Simulink
behavior would yield an output signal that is neither a CT
signal nor a DE signal. While such signals are useful and
legitimate, the additional complexity of handling them does
not add anything fundamental to our test suite.

Here, we assume that the input x is piecewise continuous.
Otherwise, it is not clear that there is a reasonable definition
of a zero crossing detector. Piecewise continuity ensures that
if there is a zero crossing within a continuous interval, then
the first condition in (7) will be satisfied within this interval
at the point of the zero crossing. Furthermore, the second
and third conditions in (7) ensure that if a discontinuous
signal crosses or hits zero during a discontinuity, the event
is detected.

If the input is not piecewise continuous, then this defini-
tion of a zero-crossing detector is not assured of detecting
zero crossings. Consider a non-piecewise-continuous input
given by

x(t, n) =

{
−1 if t ≤ 1
1 otherwise

Our zero-crossing detector produces a constant absent out-
put, failing to detect this zero crossing. But when does this
zero crossing occur? There is no earliest time t at which
x(t, n) = 1, so there is no clean definition of time of the
zero crossing. We could, of course, invoke contortions using
limits from the right, but the definition will be non-causal.
An event produced at time t = 1 would depend on future
inputs. No such difficulties arise if the input is piecewise con-
tinuous, so we simply define a test case that yields expected
behavior when the input is piecewise continuous. We do not
care what the behavior is when the input is not piecewise
continuous, because the behavior yielded by our component
is as defensible as any other.

The output of this component is a piecewise-continuous
DE signal. Note that it is always absent at microstep zero,
and that as long as the input has no chattering Zeno condi-
tion, the final value of the output is always absent.

The I/O dependencies of this component are interesting.
When the input is continuous, there is arguably a microstep
delay, because the input is zero at microstep zero, but the
output event is not produced until microstep one. However,
at discontinuities, the second and third conditions of equa-
tion (7) have no such microstep delay. So in general there is
no microstep delay from input to output.

The first condition in (7) compares a real-valued input x
to a fixed constant zero. Such a comparison is not exactly
realizable in a computer when the input is a computed value
of a continuous signal defined on a time continuum; hence
an approximation is needed. A typical approximation allows
x(t, 0) to be non-zero as long as it is small and has a sign that
is opposite to that of x(t − ε, 0) over an interval ε ∈ (0, δ).
That is, a zero-crossing is allowed to overshoot by a small
amount. Undershoot is typically not allowed, because then
there is no assurance that either a crossing or a “hit” has
occurred.

With such an approximation, the time at which the cross-
ing is detected will be slightly late. But any digital repre-
sentation of time must be quantized in any case (see Section
2.4 below), so some approximation is always necessary. A
useful regression test will specify a precision requirement, so
a useful implementation of this ideal component should pro-
vide a mechanism for controlling the precision (a parameter,

for example).
This component requires a communication point at or

near the point of a zero crossing. This introduces an unpre-
dictable breakpoint, because the time of this zero crossing
cannot be known in advance, in general. A typical realiza-
tion of such a Zero-Crossing Detector cooperates with the
master algorithm to regulate the step size taken by a sim-
ulator so that the detection delay is less than some speci-
fied time resolution. As a consequence, a hybrid cosimula-
tion FMI standard should include a mechanism for an FMU
to cooperate with the host simulator, regulating time steps
taken by the simulator. One mechanism would be for the
FMU to be able to reject step sizes proposed by the host
simulator until the step size is small enough to detect the
zero crossing within the specified resolution. Again, see [6]
for a discussion of such mechanisms.

3.10 Zero-Order Hold
DE input signal x. CT output signal y.

The output is defined to be

y(τ) =

{
x(d) if d exists,
ε otherwise

where d is the largest element in T s.t. d ≤ τ and x(d) 6= ε.
Discussion. Recall that a DE signal is non-absent at a

discrete subset of times. This property ensures that if there
is any input event at all, then all outputs at the time of that
event and beyond are not absent. Specifically, if there is
any time τ0 ∈ T where x(τ0) 6= ε, then for all τ ∈ T where
τ ≥ τ0, there exists a largest d ≤ τ such that x(d) 6= ε.

If the input is piecewise continuous, then the output will
also be piecewise continuous. This fact is not entirely obvi-
ous from the definition. Note that for x to be a piecewise-
continuous DE signal, it must be true that both its initial
and final value functions are absent. Hence, if an event
arrives on x at time t0 ∈ R+, then the event must occur
at a microstep strictly greater than 0. That is, x(t0, 0) = ε.
Hence, y(t0, 0) will have the value specified by previous event
(or be absent if there is no previous event). Suppose that
x(t0, 1) 6= ε. Then y(t0, 1) = x(t0, 1). If final value of x
at t0 is x(t0, 2) = ε, then the final value of y at t0 will be
y(t0, 1) = x(t0, 1), and this will be the value of y until (and
including) (t1, 0), where t1 is the time of the arrival of the
next event.

The output of this component has a discontinuity at each
time t where x(t, n) 6= ε. In order for this discontinuity to
manifest correctly as a sequence of two distinct values at
the same time t with distinct microsteps, there will need to
be two distinct communication points at the time t of the
input event. Suppose that an input event occurs at (t, n) for
some n > 0. That is, x(t, n) 6= ε. It is sufficient for the host
simulator to provide a communication point at both (t, 0)
and (t, n). But to provide a communication point at (t, 0),
the host simulator needs to “anticipate” the event at (t, n).
It need not provide a communication point at (t, 0) unless
there will be an event at (t, n), but (t, n) is in the future.
This seems to imply non-causal behavior.

Fortunately, we can meet this requirement without any
non-causal mechanisms. The simplest mechanism is already
realized in FMI 2.0, where whenever a non-zero step size
is taken, the next communication point automatically oc-
curs at microstep zero. There is no mechanism in FMI 2.0
to skip microstep zero. The Ptolemy II Continuous direc-



tor [21], which implements hybrid system simulation, also
always provides a communication point (t, 0) for every com-
munication point (t, n). So a Zero-Order Hold FMU will
never be forced to reject a time step if Ptolemy II is the
host simulator.

But even if the future hybrid cosimulation standard does
provide a mechanism to advance from communication point
(t0, n0) to (t1, n1), where t1 > t0 and n1 > 0, then an FMU
implementing this Zero-Order Hold component can reject
the proposed step. It thereby ensures that for every com-
munication point (t, n), there will also be a communication
point (t, 0). This mechanism does not require anticipating
future events.

3.11 Sampler
Input signal x. DE input signal s. DE output signal y.

For all τ ∈ T , the output is

y(τ) =

{
x(τ) if s(τ) 6= ε
ε otherwise

Discussion. The output is a discrete sampling of a con-
tinuous input. As long as the input s is a piecewise contin-
uous DE signal, the output will be a piecewise continuous
DE signal. Since the output is a DE signal, it will be absent
at all (t, 0) ∈ T . If the input s is free of chattering Zeno
conditions, then the output will also be free of chattering
Zeno conditions. The communication points should include
at least every τ ∈ T where s(τ) 6= ε.

3.12 Discrete Time Delay
DE input signal x. DE output signal y. Real parameter
d, where d > 0.

For all (t, n) ∈ T , the output is

y(t, n) =

{
x(t− d, n) if t ≥ d
ε otherwise

The output is a time-delayed input.
Discussion. The communication points should include ev-
ery (t, n) where x(t, n) 6= ε, and also every (t+ d, n). Notice
that we do not attempt to define this for CT inputs because
such time delays are extremely difficult to realize in simu-
lation. In theory, they have an uncountably infinite state
space. And they wreak havoc with step-size control mecha-
nisms in variable-step solvers.

3.13 Discrete Microstep Delay
DE input signal x. DE output signal y.

For all (t, n) ∈ T , the output is

y(t, n) =

{
x(t, n− 1) if n ≥ 1

ε if n = 0

The output is a microstep-delayed input.
Discussion. The communication points should include at
least every (t, n) where x(t, n) 6= ε and also (t, n+ 1). This
component, therefore, requires a mechanism for ensuring
zero step advancement of superdense time (which the mi-
crostep only advances).

Notice that we do not attempt to define this for CT inputs.
Indeed, if presented with a CT input, this component will
produce a rather odd output signal, one whose initial value
is always absent, and subsequent values are present. If the
input is a piecewise continuous DE signal, then the input is
always absent at microstep zero, and the output will also be

piecewise continuous. If the input is free of chattering Zeno
conditions, then the output will be free of chattering Zeno
conditions. In this case, the final value of the input is also
ε, so the final value of the output will be ε.

4. COMPOSITION TEST CASES
A hybrid cosimulation FMI standard that enables defini-
tion of the above components provides a rich framework
for composition of discrete and continuous simulation tools.
Any such standard should be able to unambiguously define
FMUs that realize such components and should ensure that
host simulators are capable of executing these FMUs. Such
capabilities can be verified using unit tests that check each of
the above components individually by providing a range of
inputs and verifying that the outputs match the ideal (up to
some precision, where appropriate). But such unit tests are
not quite sufficient. We also need to ensure that interactions
between multiple components behave correctly.

In this section, we discuss some test cases that combine a
few of the above components, and give acceptance criteria
that define correct behavior. These test cases are, in effect,
constraints on master algorithms. Host simulators that con-
form with the standard must implement master algorithms
that satisfy these acceptance criteria.

4.1 Simultaneous Events
This test case checks that multiple components with discrete
timed behavior coordinate their representations of time. Con-
sider the following composition:

This has three components:

1. Periodic Discrete Signal Generator. Period p=q, a=1.

2. Periodic Discrete Signal Generator. Period p=2q, a=1.

3. Sampler with DE input x

The criterion is that the output of the Sampler should equal
the output of second Periodic Discrete Signal Generator at
all superdense times. Here, q is any representable time such
that 2q is also a representable time.

Discussion. FMUs may internally use representations
of time that are different from that of the host simulator.
This test criterion is intended to ensure that no matter how
the FMU and host simulator internally represent time, the
Sampler and Periodic Discrete Signal Generator semantics
are respected. This test case also checks for a well-defined
notion of simultaneity. In particular, the periods chosen
are not exactly representable with double precision floating
point numbers, and the test is intended to ensure that de-
spite any roundoff errors, every second output of the first
Periodic Discrete Signal Generator is exactly synchronous
with every output of the second one. The Test component
must see the events at the same communication point in
superdense time.



4.2 Integrating Discontinuous Signals
The following figure shows a test case that integrates a

discontinuous input.

The output is continuous, and should match the following:

y(t, n)

t

1

0
0 1 2 3

Every acceptable test result will produce at least one output
sample at the times of the discontinuities of the output of the
Periodic Piecewise Constant Signal Generator. Samples in
between these points in time are optional, and may depend
on the step-size control algorithm used by the host simulator.

Discussion. The key feature being tested here is that a
host simulator does not get confused by a signal that has
two distinct values at the same (real) time, at distinct mi-
crosteps, and that a sequence of values at a (real) time does
not affect the output of an Integrator, except that the fi-
nal value at a discontinuity becomes the initial value for the
next integration interval.

4.3 Integrating Glitches
The following Figure shows a test case that verifies that
the Integrator output is unaffected by input values whose
duration is zero.

In this test case, a constant-valued signal is modified using
an Adder so that its value at integer-valued times sequences
from 1 to 2 and back to 1, without time elapsing. These
glitches have zero width, and hence should not affect the
output of the Integrator.

4.4 Zero-Delay Feedback
The following Figure shows a test model using a Zero-Crossing
Detector in a feedback loop.

The Integrator with Reset is integrating a constant 1, and
hence will produce a line with unit slope. When that line
crosses 1, the Zero-Crossing Detector is triggered. The event
it produces, which has value 0, is fed back through a Discrete
Microstep Delay to the reset input of the Integrator with
Reset. The expected output is as follows:

y(t, n)

t

1

0
0 1 2 3

Because of the approximate nature of the Zero-Crossing De-
tector (see Section 3.9), the times at which the reset occurs
and the value at which it is triggered are approximate, so a
regression test needs to specify a tolerance.

In the plot above, the filled and unfilled dots are required
samples, occurring at microsteps 0 and 2 respectively. Sam-
ples in between are optional and may depend on the step-size
control algorithm of the host simulator. Specifically, at time
t = 1, the output of the Integrator With Reset should be

y(1, 0) = a y(1, 1) = a y(1, 2) = 0

where a ≈ 1. Notice that the reset actually occurs in mi-
crostep 2, because the event at the output of the Zero-
Crossing Detector occurs at microstep 1, and it is then de-
layed by one additional microstep. In this particular in-
stance, the Discrete Microstep Delay in the feedback loop
might not seem to be required because the input to the
Zero-Crossing Detector is continuous, and by the definition
of the Zero-Crossing Detector, it introduces a microstep de-
lay when the zero crossing occurs in a continuous region
of the input. Nevertheless, our test case includes a Dis-
crete Microstep Delay for two reasons. First, it provides a
test where microsteps explicitly go beyond 1. Second, the
Zero-Crossing Detector introduces a microstep delay only
for some inputs. So the presence of a microstep delay in the
loop is not a static property, which complicates scheduling
of the components. Specifically, the Discrete Microstep De-
lay is non-strict, meaning that its input at superdense time
τ need not be known to retrieve its output at τ . A scheduler
can take this into account to break the apparent dependency
loop created by the feedback. The Zero-Crossing Detector,
however, is only non-strict at microstep zero (because its
output is always absent at microstep zero). Hence, without
the Discrete Microstep Delay, we would have a causality loop
at all microsteps but zero. A master algorithm would have
to ensure that at the input to the Zero-Crossing Detector,
mt = 0 for all t. In general, this is difficult to ensure.

Discussion. A subtle point raised by this composition
is that the master algorithm needs to “know” at any time t
when all signals have reached their final microstep. Specifi-
cally, it is not sufficient to stop incrementing microsteps at
time t when all signals become absent at time t. First, CT
signals never become absent at time t, so the mere presence
of a CT signal will foil this strategy. Second, the Discrete
Microstep Delay may have an absent input, and yet, in the
next microstep, produce a non-absent output.

Our assumption is that each FMU constrains step sizes so
that prior to reaching the final microstep of its outputs, it
prevents the master algorithm from advancing time. It only
permits advances in microstep. When no component does
this, the master algorithm can assume that all signals have



reached their final microstep.
For simplicity, we have constrained Discrete Microstep De-

lay so that it can only produce a non-absent output at the
very next microstep. I.e., it implements a unit microstep de-
lay, not an m-step microstep delay. It is certainly possible
to generalize this mechanism to allow an m-step microstep
delay, but we have not encountered any need for such gen-
erality, so we have not included this in the test cases for a
hybrid cosimulation standard.

5. RELATED WORK
Together with the FMI 2.0 standard, the FMI Development
Group has developed an FMI Test Package consisting of
Modelica models [18]. In this paper, we take a different
approach: instead of providing a Modelica model as a ref-
erence, we give a mathematical ideal. The ideal correct be-
havior of a model is unambiguous and language and tool in-
dependent. These tests reflect discrete-event behaviors that
are found in other types of simulators, such as network simu-
lators, hardware description languages, DEVS-based system
simulators [24], and synchronous-reactive languages [4].

A general discussion about the FMI standard’s limitations
on cosimulation can be found in [6]. Several authors dis-
cuss ways of implementing master algorithms [3, 6, 22] and
how to generate and implement FMUs for the current FMI
cosimulation standard [8, 20]. However, in this paper we
formalize requirements and test cases that are needed for
the next standard that should include a sound interface for
hybrid co-simulation.

6. CONCLUSION
Hybrid cosimulation is a far from trivial goal. A standard
that enables composition of simulation tools has two con-
flicting objectives. It needs to be sufficiently rigorous to
define the meaning of a composition of components. And
it needs to be flexible enough to embrace industry-standard
and established simulators. The former demands a rigorous
semantics, but the later creates pressure for less well-defined
semantics.

This paper does not define such a standard, but instead
enumerates a set of capabilities that such a standard must
support to be useful. In particular, the paper enumerates a
suite of components and test cases that cover a wide range
of hybrid system behaviors.
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